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On the scaling behaviour in a 
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The significance of a scaling behaviour in the creep and stress-relaxation log o - log  
curves is analysed. It is shown that such a property imposes some restrictions on the 
parameters of the theoretical models. Finally, the formalism is applied to some consti- 
tutive equations used in the literature to describe creep and stress-relaxation data. 

1. Introduction 
Several investigators [1 -7 ]  have observed a 
scaling behaviour in the experimental log a - l og  
creep and stress-relaxation curves in various 
metals and alloys, o is the applied stress and ~ the 
plastic strain rate. This scaling property means 
that it is possible to superpose by a translation 
(A log o, A log e') anyone of the curves onto any 
of the others, in such a way that the overlapping 
segments of  each curve match within experimental 
error. Such a scaling behaviour has been taken as a 
proof  of  the uniqueness of the log o - log  ~ curves 
and of the existence of  a plastic equation of state 
for the material [2]. Povolo and Rubiolo [8] 
have discussed recently whether the scaling 
relationship is a sufficient condition to ensure the 
existence of  a state variable, dependent on o and ~. 

It is the purpose of this paper to analyse the 
significance of the scaling relationship and the 
restrictions that  such a property imposes on 
the theoretical models. 

2. T h e o r y  
Experimentally, a set of  log o - log  ~ curves are 
obtained, at constant temperature,  as a function 
of  a third parameter, which will be represented 
by 3'. This parameter can be, for example, the 
initial stress for a stress-relaxation experiment, 
the plastic strain for a creep experiment [7] or the 
hardness parameter in Hart 's phenomenological 
theory [1,2]  for plastic deformation. 

Fig. 1 a shows two log o - log  ~ curves at differ- 
ent 3'. If the two curves are related by scaling, 
then, point A, for example, is translated to point B 
(or vice versa) along the translation path of  slope 

/x = tan ~ = A log o/A log ~ = constant. (1) 

/~ is the same for all the curves and, for any pair 
of  log o - log  ~ curves at different 7. 

(2x log 0) 2 + (2x log ~)2 = (1 + ~t2)(A log ~)2 

= (1 + 1/~t2)(A log o) z 

= F ( A T ) =  constant, 

(2) 
where F(2xT) can be obtained experimentally. 

The different theoretical expressions, used to 
describe stress-relaxation or creep behaviour, can 
be represented in a normalized diagram [9] as 

f(~o, ~/~*, ~) = 0, (3) 

where c~, ~* and /3 are parameters that depend on 
the particular model considered and f is a general 
function. Equation 3 can be represented, in the 
normalized plot, as curves parametrized in/3. This 
is shown schematically in Fig. lb. In Equation 3 
/3 is given as an implicit function of ~/~* and ao,  
to include the cases in which it cannot be obtained 
explicitly. 

The scaling property in the experimental 
log o - log  ~ curves, along the translation path given 
by Equation 1, will impose some restrictions on 
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Figure 1 (a) Two exper imental  log o - l o g  ~ curves, at different  7, related by scaling along the translat ion path  o f  slope 
~. (b) Two theoretical  curves, at different 3, in a normalized plot.  

the parameters of  the theoretical model. In fact, 
taking increments of Equation 3 gives 

0f 0f 
O log (ao) A log (ao) + O log (d/d*) A log (@/d*) 

+ -  Of Alog/3 = 0, (4) 
0 log/3 

with the additional conditions 

0f Of 0 log 3 
.4 - 0, (s) 

0 log (aa) log/3 O log (aa) 

Of Of O log/3 

0 log (d/d*) + 0 log/3 0 log (@/d*) 
0. (6) 

On taking into account Equations 5 and 6, Equa- 
tion 4 can be written as 

0 l o g 3  Alog(ao)-4 Olog3 A 
0 log (act) 0 l o g ( ~ * )  log (@/d*) 

= A log/3. (7) 

By introducing 

h = h (~o ,  d/d*,/3) - 

g = g ( ~ ,  e/d*, /3)  - 

Equation 7 can be reduced to 

0 log/3 

log (cw)'  

0 log 3 

0 log (@/d*) ' 

(8) 

(9) 

h(A log a + A log a) + g ( A  log d -- A log d*) 

= A log/3. (10) 

This equation relates the increments on the experi- 
mental variables to the corresponding increments 
on the theoretical parameters. It must be pointed 
out that, due to the scaling property expressed by 

Equations 1 and 2, Alog a and A log d remain 
constant, along the curve indicated by 3' in Fig. la, 
during the translation. 

According to the forms of the functions f and 
g, Equation 10 leads to different conditions 
between the increments of a, d and a, d*,/3: 

(a) h = g g = k + H ( a a ,  d/d*,/3), i.e. the func- 
tions h and g coincide and do not contain an 
additive constant, k. In this case, Equation 10 can 
be written as 

h(A log a + A log a + A log @ -- A log @*) 

= A log/3 

and since h = h(ao, ~/@*,/3) this equation can be 
satisfied only if 

Alog/3 = 0 (11) 
and 

A l o g a  + Alog a +  Alog @--Alog d* = 0. 
(12) 

Equation 11 establishes that /3 remains constant 
during the translation and Equation 12 connects 
the increments of the theoretical parameters c~ and 
@* to the corresponding increments on the experi- 
mental variables o and d; 

(b) h =g = k + H(ao, d/@*,/3), where H does 
not contain an additive constant. Substituting 
into Equation 10 gives 

k ( A l o g a + A l o g o + A l o g d  Alog@*) 

+ H(A log a + A log o + A log d -- A log d*) 

= A log/3 
which leads to 

A log/3 - 0 (13) 
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A l o g a + A l o g o + A l o g ~ - - A l o g ~ *  = O, 

(14) 

since H is a function of  o and ~; 
(c) h = g = k, where k is a constant. Substituting 

into Equation 10 gives 

k(A log a + A log o + A log ~ -- A log ~*) 

= A log/3, (15) 

(d) h 4= ka + H(ao, ~/~*,/3), g 4= k: + a(ao, 
~/~*,/3) and h 4:g;  kl  and k2 are constants a n d H  
and G do not contain additive constants. In this 
case, Equation 10 can only be satisfied if 

A log/3 = 0, (16) 

A log t~ + A log o = 0, (17) 

A l o g ~ - - A l o g ~ *  = 0. (18) 

It is easy to show that the cases 

h = kl + H(ao, (:/~*,/3), 

g & k2 + G(o~o,~/~*,~), h ~ g 

and 

h 4= kl + H(ao, ~/~*,/3), 

g = k2 + G(ao, ~/~*,/3), h @ g 

lead to Equations 16, 17 and 18, 
(e) h = k l ,  g ~ k2 + G(c~o, ~/~*,/3). Substituting 

into Equation 10 gives 

kx (A log a + A log o) 

+ g(A log ~ --  A log ~*) = A log/3, 

which can only be satisfied if 

A l o g ~ - - A l o g ~ *  = 0, (19) 

ka (A log ct + A log o) = A log/3; (20) 

(f) h --/:: kl + H(olo, ~/~*,/3),g = k2. Substituting 
these equations into Equation 10 leads to 

h(A log a + A log o) 

+ k2(A log ~ -- A log ~*) = A log/3, 

which can only be satisfied if 

A l o g a + A l o g o  = 0, (21) 

k2 (A log ~ --  A log C )  = Alog/3; (22) 

(g) h = k l ,  g = k2. In this case, Equation 10 
leads to 

kl (A log ct + A log o) 

+ k 2 ( A l o g ~ - - A l o g ~ * )  = Alog/3. (23) 
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Equations 17 and 18 allow a determination of  
the increments of  the theoretical parameters a,  ~* 
from the increments of  the experimental variables 
o, & Furthermore,  on combining Equations 1, 17 
and 18 it is easy to show that 

A l o g a  = - - p A l o g ~ *  
o r  

~(~*)~ = constant, (24) 

which shows that the scaling condition establishes 
a relationship between the theoretical parameters 
a and ~*. In addition, combining Equations 1, 2, 
17 and 18 leads to 

F(A7) = (1 + p2) (A log ~,)2 

= (1 + 1/p2) (A log a) 2. (25) 

This equation relates the increments of  the 
experimental parameter 3' to the increments of  
the theoretical parameters. Furthermore, since 
the translation is performed at constant t3, i.e. 
A log 13 = 0, as the point A translates to B, in 
Fig. la, the point A', homologous to A, does not 
move in the normalized plot o f  Fig. 1 b. 

For cases (a) and (b) the scaling condition, 
given by Equations 12 and 14, can be written as 

(a/~*) = constant t -(u+l) = constant o -(1+a/u) 

which shows that the relationship between a and 
~* depends on the location of  point A, along curve 
7 of  Fig. lb.  This is equivalent to stating that the 
theoretical expression cannot lead to a scaling 
behaviour in a log o - log  ~ diagram. 

In the case where A log/3 r 0, the increments 
on the theoretical parameters can be obtained only 
if the theoretical model provides an additional 
relationship between the parameters a,  ~* and t3, 
i.e. only if two parameters are independent. Then, 
if/3 = 3(a, ~*) 

0 log~ A log a + 0 log__~3 ~, 
A log/3 -- 0 log o~ 0 log ~* A log 

which on introducing a = (0 log/3/0 log a)  and b = 
(0 log/3/0 log ~*) can be written as 

A log/3 = a A log a + b A log ~*. (26) 

Case (c) cannot be solved even in this situation 
since there are only two equations (Equations 15 
and 26) and three unknowns (A log a,  A log ~*, 
A log/3). As for cases (a) and (b), the theoretical 
model does not give a scaling behaviour in the 
log o - log  ~ plot. 

A similar situation is found for case (g) which 



has no solution since 

f(o~o, 4/4",  /3) = /3 - -  (o~o) k~ @/4")  ~ , 

and the log o - log  4 plot gives parallel straight 
hines, leading to any translation path. 

It can be easily demonstrated that cases (a), (b) 
and (c), where h = g imply that the function f of  
Equation 3 must be of  the type 

f = /3 - A  (4/4")1 = 0 
or 

/3 = A ( 4 / 4 " ) ] ,  

where A is a function of the product of  the 
variables a o  and 4/4", then, in these cases, which 
also include case (g), either the theoretical expres- 
sion does not lead to a scaling behaviour in the 
log o - log  4 plot or to any translation path. 

For case (e), on combining Equations 1, 2, 19, 
20 and 26 it is easy to show that 

(b - t & )  A 
A log a - ( ~ _ - - - ~  za log 4 (27) 

A log4*  = A l o g 4  (28) 

k I (b -- ap) 
A log/3 - A log 4 (29) 

(](71 --a) 

[ (kl - a )  ]2 (/\ log /3)2 " 
F(A"{) : (1 @ ]2 2) [ kl(b -au)J 

(30)  

The last equation relates an increment of the 
experimental parameter 3' to an increment of  the 
theoretical parameter /3. Furthermore,  since 
A log (4 /4*)= 0 (Equation 28) as the point A 
translates to B in Fig. la ,  the point A' translates 
to B', parallel to the a o  axis, in the normalized 
plot of  Fig. lb .  

On combining Equations I,  2, 21, 22 and 26, 
case (f) leads to 

A log ct = --/1 A log 4 (31) 

A log4*  - ( k z - + P a ) A  (b + kz) log4 (32) 

k2 (b -- pa) A '  
l o g / 3  - , og  4 ( 3 3 )  

F(AT) = (1 + p : )  [ k ~ / 7 - -  ~ ) J  (,5 log ~)2. 

(34) 

The point A'  translates to B ' ,  in the normalized 
plot o f  Fig. lb  since A log (ao)  = O. 

The principal forms of  the function f have 

been considered and the different scaling con- 
ditions are summarized in Table I. 

3. Applications 
The formalism just described can be applied, for 
example, to some constitutive equations pro- 
posed in the literature for the description of  
creep and stress-relaxation curves. 

Hart et  al. [2] have proposed the phenomeno- 
logical constitutive equation 

o = o* exp [-- (4/4") -x] 

for the description of plastic behaviour at high 
homologous temperatures. In this case a =  1/o* 
and/3 = X so that 

h - 31og/3 31ogX 

3 log (ao)  3 log (aa)  

= [X(4/4*)-Xlog(-  4/4")1-' 

3 log 13 3 log X g -  
O log (4t4") 3 log (4/4") 

3, 

log [(4/4")-~'1 " 

Then, h 4= g and neither of  them contain an addi- 
tive constant so that,  according to Table I, the 
scaling conditions are 

AlogX = 0 

A l o g o *  = A l o g o  

Alog4*  = A l o g 4  
and 

a* = C(4")",  (35) 

where C is a constant. Equation 35 was given, 
without demonstration, by Hart e t  al. [2]. 

Johnston and Gilman [10] have proposed the 
stress-strain rate relationship 

4 = ~ p b K ( o  --  ai) m (36) 

where K and m are material constants at a given 
temperature;/9 is the mobile dislocation density, b 
is the Burgers vector, ~ is an orientation factor and 
ai is an internal stress. Equation 36 has been 
widely used to describe stress-relaxation data and 
can be written in a normalized form as [9] 

a a  = 1 + (4/4") e (37) 

with 
o~ = 1/oi, /3 = 1]m 

and 
"* ~ p b K ( 1 /  ) = O~ l i f t .  (38) 
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T A B L E I Relat ionships to be satisfied by the  parameters  Of the theoretical model ,  expressed by f ( ao ,  ~/~*, [3) = 0, 
when  the log o - l o g  ~ exper imental  curves, parameterized in 7 show a scaling behaviour,  k 1, k2 a n d  C are constants ;  G 
and H are general funct ions  that  do no t  include an additive cons tant  and A is a func t ion  o f  the product  (ao) (~/~*). 
a = a log [3/a log c~ and b = 0 log/3/~ log ~* in the additional relationshi p [3 = [3(cg ~*) provided by the theoretical model  

log ~ ~ log [3 
f ( a a ,  ~/~*, [3) = 0 h - g - Scaling condit ions 

log (aa) 0 log (~/~*) 

[3 = A[(ao)(d/~*)] h = g h = g 

[3 = C(ao)l~ (#~, ) lq  k~ k2 

[3 4: A[(cco)(~/~*)] 4= k~ + H  o,-~,[3 4: k2 + a  ceo,-~g,[3 

= k~ + H v~ k 2 + G 

C k~ + H  = k 2 + G  

k,  r k s + G 

4= k~ + H k 2 

No scaling or any translation path  

A log[3 = 0 

A l o g a  = --Alogd=--~uAlog 

Alog~,* = A I o g 4  

a(~*)/~ = constant  

F(AT) = (1 + **2) (A log ~,)2 

= (1 + 1/# 2 ) ( A l o g a )  2 

(b -- uk~) 
A l o g a  -- - - A l o g  

(k, - a )  

A l o g ~ *  = Alog  

k , (b  - -ua)  A 
A log [3 -- log 

(k, - a )  

F(a-r) = (i + .:) [ ~ ] ~  (k, --a) ]2 (h  log B)2 

A l o g a  = - - # A l o g ~  

(k2 + ua) 
h log ~* -- - -  n l o g ~  

(b + k0  

Alog/3 -- k 2 ( b - ~ a )  h l o g  
(b + k=) 

~. [ (b + k2) ]2 
F(~7) = (I + U ) | ' . - 7 : - _ - - . I  

[/%(b ua)J 
(~  log ~)2 

From Equation 37 it is easily seen that 

h _ 

g = 

13 log/3 ao  

O log (aa) ( t / t*)~!n(t / t*)  

a log 13 /3 
log (t/t*) In (t/t*)' 

then, h C g and neither of them contain an addi- 
tive constant. From Table I 

Alogt3 = - - A l o g m = 0  

Aloga i  = A l o g a  

A log 4" = A log 4. 

In addition, from the relationship 13 =13(a, C ) ,  
given by Equation 38, it is easily seen that 

p = l/m, 
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i.e. if Equation 37 (or 36) leads to a scaling behav- 
iour in a log a - log  t plot, 1/m should give the 
slope of the translation path if the dislocation 
density, p, remains constant. 

Finally, Friedel [11] has developed a creep 
theory based on the thermally activated glide of 
dislocation loops cutting trees of the dislocation 
forest. When no elastic interaction between the 
trees and the moving loop is present, the strain 
rate is given by 

t = pv(2a'G/lb) -z/3 (o-- Oi) 2/3 

[7 2Ui + bd(Za'Gbl2)l/a ( o .  oi) 2,3 ] 
x exp [ ~ / ] 

(39) 

where U i is the energy to form the two jogs 



during the cutting process, d is the slipping 
distance necessary for the jogs to be formed, G 
is shear modulus, p is the density o f  moving 
loops, v is Debye frequency, b is the Burgers 
vector, I is the average spacing between dislo- 
cations and a '  is a geometrical factor, al is a 
long-range frictional stress due to elastic stresses 
and is given by 

ai = Gbff3'l, (40) 

where/3' is a geometrical constant. 
Equation 39 can be normalized to 

~/~* = ( a a  1) 2/3 exp [[3(aa-- 1) 2/3] (41) 

where 

~* = pv(2a 'G/bZ)  -2/3 a~/3 exp (-- 2Uj / kT )  

(42) 

(43) 

(44) 

[3 = ( b d / k T )  (2a 'abZ2) ~e3 a? '3 

a = 1/ai=[3'l /Gb. 

From Equations 41 to 44 it is seen that 

/3 = C~* (45) 
with 

C = ( 2 a ' G b 2 d / p v k T )  exp (2Uj /kT) .  

On differentiating Equation (41) it is easy to show 
that 

log [3 aa 
h - - ( 2 / 3 )  - -  

log (aa) (aa -- 1) 

{1 1 } 
x -t In [~/~*(aa 1)2/3] . (46) 

log 13 1 
g - 0 log (e/~*) i n [~ /~*(cw-  1)2/31 (47) 

Then, h 4: g and neither h norg  contains an additive 
constant. From Table I it is seen that A log [3 = 0 
that implies, according to Equations 45 and 18, 
A l o g t - A l o g t * = 0 .  Equation 39 leads to a 
scaling behaviour with a translation path paralM 
to the a axis, i.e. # = oo. 
4. Discussion and conclusions 
Owing to the scaling property,  the individual 
log a - l o g  e curves, at different 7, can be super- 
posed by translations along the translation path 
o f  slope bt, leading to a master curve corresponding 
to a given 3' [2].  Such a master curve extends the 
experimental range and can be used to obtain the 
function f ( a a ,  ~/~*, [3) = 0 of  the theoretical 
model. Once the parameters a, ~* and /3, carte- 

sponding to a given 7, are known the parameters 
for the rest of  the individual curves can be obtained, 
from A log~ or Alog a, by using the scaling 
conditions given in Table I. This procedure can 
be used also if, by some limiting procedure, the 
parameters for one of  the individual curves can 
be found. This method was used by Payola and 
Marzocca [12] to obtain the theoretical para- 
meters for log a log ~ creep curves measured in 

Zircal0Y-4. 
From the theoretical point of  view, a scaling 

behaviour in the log a - log  ~ curves imposes 
restrictions on the parameters of  the theoretical 
model. If the data, for example, are described by 
Hart's model and show a scaling behaviour, the 
parameter X must be the same for all the indi- 
vidual curves and the parameter a* must be 
related to ~*, according to Equation 35. If, on 
the other hand, the data are described by Friedel's 
theory (Equation 39), the translation path must 
be parallel to the o axis. 

Finally, it should be pointed out that the cases 
considered are not exhaustive and are given as a 
guide. In fact, more sophisticated relationships 
between h and g might occur as, for example, 

h = kl + k2g, 

which substituted into Equation 10 and taking 
into account Equations 1 and 26 leads to 

Alogct  = (k1~--/ lk2b b) A log  
( k 2 b ' -  k l + a) 

A l o g t *  = ( k 2 p - - k 1 + a )  A l o g  ~ 
(k2b - - k l  ~- a) 

k l  ( k l #  -- b -- k~12 + ala) 
A log [3 = A log ~. 

( k : b  k l  + a) 

Any relationship between h and g, not considered 
in Table I, can be analysed following the proce- 
dure described in the paper. 
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